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Digital Image Processing Examples

Imaging tasks1

Image Denoising

⇓

Cartoon/Texture Decomposition

⇓

1Examples from L. Vese, S. Osher (2004)
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Digital Image Processing Examples

Imaging tasks (cont.)

Image Segmentationa

aExample from C. Guyader, L.
Vese (2008)

Image Inpaintinga

⇓

aExample from Bertalmio et al
(1998)
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Digital Image Processing Examples

Image inpainting - restore images of different kind

1
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Digital Image Processing Examples

Image inpainting - restore images of different kind
(cont.)

1
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Digital Image Processing Examples

Image inpainting - in general the task is . . .

a

asource: Chan and Shen
2005

Inpainting = Image
interpolation
Reconstruct the ideal
image u on the missing
domain D based on the
data of u available
outside D.
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Digital Image Processing Examples

Some applications . . .

Digital Restoration of Frescoes:
Fife Senses Project on Mathematical Methods for Image Analysis and Processing in
the Visual Arts sponsored by the Viennese Technology Fund (WWTF).
Collaboration between

Faculty of Mathematics, University of Vienna (Peter A. Markowich, Massimo
Fornasier):

Restore the frescoes digitally in an automated way⇒ courtesy and template for
museums artists

Academy of Fine Arts Vienna, Institute for Conservation and Restauration
(Wolfgang Baatz)

Physcial Restoration of the Frescoes⇒ Comparison with the digital result
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Digital Image Processing Examples

Some applications . . . (cont.)

Preliminary Results:
Given image: Restored Image:

Unfortunately this doesnt always work as straightforward as in this example . . .

Large gaps

Lack of grayvalue contrast

Low color saturation and hue

. . . we need more sophisticated algorithms to restore the frescoes!
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Digital Image Processing Examples

Some applications . . . (cont.)

Results with Cahn-Hilliard inpainting:

2

2Cahn-Hilliard inpainting after 200 timesteps with ε = 3 and additional 800
timesteps with ε = 0.01
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Digital Image Processing Examples

Some applications . . . (cont.)

Binary based total variation inpainting:
Based on the so recovered binary structure the fresco is colorized.
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Digital Image Processing Examples

Some applications . . . (cont.)

Road Reconstruction:3

Our data consists of satellite images of roads in Los Angeles of the

following kind . . .

3Joint work with Andrea Bertozzi from UCLA
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Digital Image Processing Examples

Some applications . . . (cont.)

Road Recontruction with Bitwise Cahn-Hilliard:

Goal: Remove objects like trees that cover the road and recover the
picture of the plain road.

Results:
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Digital Image Processing Examples
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Digital Image Processing Examples

We seek for a method which . . .

. . . smoothly continues image contents into the missing domain

. . . connects edges/objects even across large gaps (cf. road
examples)
. . . works for all numbers and shapes of missing domains
. . . performs the restoration process in an automated way
. . . and all this with a reliable and efficient numerical scheme.
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Digital Image Processing What is a Digital Image and how do we Process it?

Digital images

A digital image is obtained from an analogue image (representing the
continuous world) by sampling and quantization . . .
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Digital Image Processing What is a Digital Image and how do we Process it?

Digital images (cont.)

. . . it consists of pixels (grid element, matrix positions) which are
assigned with the mean grayscale or colour information within this
element . . .

grayscale image
u : Ω = {1, 2, . . . ,m} × {1, 2, . . . , n} → I = {0, 1, . . . , 255}
colour image u : Ω → I3, where u(x, y) = (r, g, b) = (red, green,
blue).
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Digital Image Processing Mathematical Image Models

Image models and representations

Image function u : Ω ⊂ R2 → R, Ω is open and bounded (eventually
with Lipschitz boundary).

Deterministic image models, e.g., generalized functions, Lp

functions, Sobolev images Hk, BV images.

Multiscale representations, e.g., Wavelets, curvelets, ridgelets,
shearlets.
Lattice and random field representations, e.g., images as Markov
random fields.
Level-set representation, i.e., representing the grayscale image as
the set of level lines for the values {0, 1, . . . , 255}.
Mumford-Shah image model, i.e., representing the image as a
combination of a smooth parts and discontinuities (edges).
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Digital Image Processing Mathematical Image Models

Deterministic image models - Distributions

Let Ω be a two-dimensional Lipschitz domain, i.e., open, bounded with
Lipschitz boundary. Then we define the set of sensors on Ω as

D(Ω) = {φ ∈ C∞(Ω), supp(φ) ⊆ Ω} .

An image u on Ω is then treated as a distribution, i.e., a linear
functional on D(Ω):

u : φ → (u, φ) .
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Digital Image Processing Mathematical Image Models

Deterministic image models - Distributions (cont.)
Properties:

sensing is linear

with additional positivity constraint we have that the Riesz representation
theorem is valid, i.e., u is a positive distribution, then for any sensor
φ ∈ D(Ω) there exists a Radon measure µ on Ω s.t.

(u, φ) =
∫

Ω

φ(x) dµ.

notion of derivatives, i.e., distributional derivative v = ∂α∂βu is defined
as a new distribution such that

(v, φ) = (−1)α+β
(
u, ∂α∂βφ

)
, ∀φ ∈ D(Ω)

sensing of distributions mimics the digital sensor devices in CCD
cameras

very general class of functions . . .

. . . to capture intrinsic visual features in an image we have to impose more
information into the image model ⇒ Sobolev spaces, bounded variation, . . .
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Digital Image Processing Mathematical Image Models

Deterministic image models - Distributions (cont.)

Example 1 - Bright spot as delta distribution

Here, u is a bright spot concentrated
at the origin, i.e., u(x) = δ(x), where
δ stands for the Dirac delta function.
Then

(u, φ) = φ(0) for any sensor φ ∈ D(Ω)

Example 2 - Step edge as Heaviside function

Here, u describes a step edge from 0
to 255, i.e., u(x) = u(x1, x2) = H(x1),
where H(t) is the Heaviside 0 − 255
step function, i.e.,

H(t) =

{
255 t ≥ t1

0 t < t1.
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Digital Image Processing Mathematical Image Models

Deterministic image models - Lp functions
For any p ∈ [0,∞), the Lebesgue Lp function space is defined as

Lp(Ω) =
{

u :
∫

Ω

|u(x)|p dx < ∞
}

.

For p = ∞ an L∞ image is understood as an essentially bounded function.
Properties:

Banach spaces with norms

‖u‖p =
[∫

Ω

|u(x)|p dx

]1/p

.

Lp images are naturally distributional images (Riesz respresentation
theorem for Lp + D(Ω) is dense in Lp∗, for 1 ≤ p∗ < ∞) . . .

. . . but they carry more structures than gen-
eral distributions, cf. layer-cake representa-
tion.
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Digital Image Processing Mathematical Image Models

Deterministic image models - Hk functions

An image u ∈ L2(Ω) whose (distributional) gradient ∇u is in
L2 × L2 is said to be Sobolev H1.

H1(Ω) is a Hilbert space with inner product

(u, v)H1 = (u, v)L2 + (∇u,∇v)L2×L2 ,

and corresponding norm

‖u‖H1 =
√
‖u‖2L2 + ‖∇u‖2L2×L2 .

Measure image information!

Higher-order Sobolev spaces Hk(Ω) defined in similar fashion
(higher-order derivatives!).
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Digital Image Processing Mathematical Image Models

Deterministic image models - The total variation (TV)

For u ∈ L1
loc(Ω)

V (u, Ω) := sup
{∫

Ω
u∇ · ϕ dx : ϕ ∈

[
C1

c (Ω)
]2

, ‖ϕ‖∞ ≤ 1
}

is the variation of u. Further
u ∈ BV (Ω) (the space of bounded variation functions)

⇔
V (u, Ω) < ∞.

In such a case,
|Du|(Ω) = V (u, Ω),

where |Du|(Ω) is the total variation of the finite Radon measure Du,
the derivative of u in the sense of distributions.

For a function u ∈ C1(Ω), the total variation of u is equivalent to

|Du|(Ω) =
∫
Ω
|∇u| dx.
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Digital Image Processing Mathematical Image Models

Deterministic image models - The total variation (cont.)

Properties:
BV images allow edges (in contrast to W 1,1, i.e., H1 images).
The total variation penalizes small irregularities/oscillations while
respecting instrinsic image features such as edges.
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Digital Image Processing Mathematical Image Models

Deterministic image models - The total variation (cont.)

What does it measure?

Figure: The total variation measures the size of the jump.
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Digital Image Processing Mathematical Image Models

Level lines & coarea formula
Let u = u(x) be a grayscale image on Ω. For each real value λ we define the
λ-level line of u to be

Γλ = {x ∈ Ω : u(x) = λ} .

Classical level line representation is the one-parameter family of all the level
lines, i.e.,

{Γλ : λ ∈ R}

Coarea formula (weak version): For a smooth image u we have∫
Ω

|∇u| dx =
∫ ∞

−∞
length(Γλ) dλ

. . . a similar relation holds for functions of bounded variation (length has to be
redefined).
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Digital Image Processing Gaussian Filtering, the Heat Equation and Nonlinear Diffusion

Gaussian filtering

Let f be a grayscale image, represented by a real-valued mapping
f ∈ L1(R2) (zero-expansion of image from Ω to R2). Gaussian
smoothing of f by convolution

u = (Kσ ∗ f)(x) :=
∫

R2

Kσ(x− y)f(y) dy,

where Kσ denotes the 2D Gaussian of width σ > 0, i.e.,

Kσ(x) :=
1

2πσ2
e−|x

2|/(2σ2).

Properties:
Since Kσ ∈ C∞(R2) we get u = Kσ ∗ f ∈ C∞(R2) (even if f is
only absolutely integrable).
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Digital Image Processing Gaussian Filtering, the Heat Equation and Nonlinear Diffusion

Gaussian filtering (cont.)

Behaviour in the frequency domain:

(F(Kσ ∗ f))(w) = (FKσ)(w) · (Ff)(w)

= e−|w|
2/(2σ2) · (Ff)(w).

Low-pass filter that attenuates high frequencies.

Equivalence to linear diffusion filtering . . .
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Digital Image Processing Gaussian Filtering, the Heat Equation and Nonlinear Diffusion

The heat equation for image smoothing

For a given f ∈ C(R2) we consider the linear diffusion prozess

ut = ∆u

u(x, 0) = f(x),

with solution

u(x) =

{
f(x) t = 0
(K√

2t ∗ f)(x) t > 0.

Properties:
Solution is unique in the class of functions u with

|u(x, t)| ≤ M · ea|x|2 , (M,a > 0).

The solution depends continuously on the initial image f w.r.t.
‖ · ‖L∞ .
The solution fulfills the max-min principle

inf
R2

f ≤ u(x, t) ≤ sup
R2

f on R2 × [0,∞).
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Digital Image Processing Gaussian Filtering, the Heat Equation and Nonlinear Diffusion

The heat equation for image smoothing (cont.)

Gaussian smoothing structures of order σ requires to stop the
diffusion process at time

T =
1
2
σ2.
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Digital Image Processing Gaussian Filtering, the Heat Equation and Nonlinear Diffusion

Nonlinear diffusion filtering
Perona-Malik model: Replace linear diffusion process by a nonlinear one
which reduces the diffusivity at edges:

ut = div
(
g(|∇u|2)∇u

)
,

where g is called the diffusivity of the process, e.g.,

g(s2) =
1

1 + s2/δ2
(δ > 0).

Interplay of forward- and backward diffusion ⇒ image smoothing & edge
detection in a single process.
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Digital Image Processing Gaussian Filtering, the Heat Equation and Nonlinear Diffusion

The heat equation for image inpainting

Construction of grayvalues inside the holes by ”averaging“ grayvalues
around the holes!
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Digital Image Processing Gaussian Filtering, the Heat Equation and Nonlinear Diffusion

The heat equation for image inpainting (cont.)

Let D ⊂ Ω be a hole in the image domain. We solve

ut = ∆u in D

u(x, 0) = 0 in D

u|∂D = f |∂D.

. . . or we solve for the union of all holes D . . .

ut = λ∆u + χΩ\D(u− f) in Ω
u(x, 0) = 0 in Ω,

where

χΩ\D(x) =

{
1 x ∈ Ω \D

0 otherwise,

and for 1 � λ.
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Image Inpainting

Outline

1 Digital Image Processing
Examples
What is a Digital Image and how do we Process it?
Mathematical Image Models
Gaussian Filtering, the Heat Equation and Nonlinear Diffusion

2 Image Inpainting
State of the Art Methods
The Variational/PDE Approach
Second- Versus Higher-Order PDEs for Inpainting
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Image Inpainting State of the Art Methods

Some history and classifications

The term inpainting was invented by art restoration workers [G.
Emile-Male 76, S. Walden 85] and first appeared in the framework
of digital restoration in the work of [Bertalmio et al. 00] (PDE
approach).
Before this: works of engineers and computer scientists: statistical
and algorithmic approaches in the context of image interpolation,
e.g., [A. C. Kokaram et al. 95], image replacement, e.g., [H. Igehy,
and L. Pereira 97], error concealment [K.-H. Jung et al. 94], and
image coding, e.g., [J. R. Casas 96]. Some of these coding
techniques already used PDEs for this task, e.g., [J. R. Casas 96].
Mathematics community got involved in image restoration, using
partial differential equations and variational methods for this task,
e.g., [M. Nitzberg, D. Mumford, and T. Shiota 93, Masnou, and
Morel 98, V. Caselles, J.-M. Morel, and C. Sbert 98, Bertalmio et
al. 00].
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Image Inpainting State of the Art Methods

Some history and classifications (cont.)

PDE- and variational methods are local inpainting methods, i.e.,
restore structure (geometry) but are not applicable for texture
restoration/synthesis.
Global inpainting methods: texture synthesis & exemplar based
inpainting, e.g., [Efros and Leung 99]
Inpainting in transform spaces, e.g., [Eldad, Starck, Sapiro]
Simultaneous structure/texture inpainting, e.g., [Aujol, Cao,
Gousseau, Ladjal, Masnou, Perez, Bugeau, Bertalmio, Caselles,
Sapiro 08-09].

In the following we are especially interested in the inpainting of
structures, like edges and uniformly colored areas in the image, using
PDEs and variational approaches.
Let us consider some examples . . .
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Image Inpainting State of the Art Methods

Bertalmio et al.’s approach 2000

Bertalmio et al.’s model: based on observations about the work of
museum artists, who restorate old paintings.

Principle: prolongating the image intensity in the direction of the
level lines (sets of image points with constant grayvalue) arriving
at the hole. This results in solving a discrete approximation of the
PDE

ut = ∇⊥u · ∇∆u,

solved within the hole D extended by a small strip around its
boundary.
To avoid the crossing of level lines: apply intermediate steps of
anisotropic diffusion.
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Image Inpainting State of the Art Methods

Masnou & Morel’s disocclusion 1998
Masnou and Morel presented a variational technique for removing occlusions
of objects with the goal of image segmentation.

Idea: connect T-junctions at the occluding boundaries of objects with
Euler elastica minimizing curves! (A curve is said to be Eulers elastica if
it is the equilibrium curve of the Euler elastica energy

E(γ) =
∫

γ

(a + bκ2) ds,

where ds denotes the arc length element, κ(s) the scalar curvature, and
a, b two positive constants.)

Basic principle: prolongate level lines by minimizing their length and
curvature.

. . . transformed into a functional approach by Chan & Shen: Eulers elastica
inpainting
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Image Inpainting State of the Art Methods

Chan & Shen: TV inpainting 2001
Chan & Shen’s approach is based on the most famous model in image
processing, the total variation (TV) model.

Principle: action of anisotropic diffusion inside the inpainting domain ⇒
preserves edges and diffuses homogeneous regions and small
oscillations like noise.

ut = λ∇ ·
(
∇u

|∇u|

)
+ χΩ\D(f − u).

Disadvantage: level lines are interpolated linearly.
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Image Inpainting The Variational/PDE Approach

The variational approach

J (u) = R(u) +
1
2λ

∥∥χΩ\D(u− g)
∥∥2

B1
→ min

u∈B2

,

where

χΩ\D(x) =

{
1 Ω \D

0 D,

is the characteristic function of Ω \D.

R(u): fills in the image content into the missing domain D, e.g., by
diffusion and/or transport.
The fidelity term only has impact on the minimizer u outside of the
inpainting domain due to the characteristic function χΩ\D.

Now for B1 = L2(Ω) we also have . . .
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Image Inpainting The Variational/PDE Approach

PDE approach

. . . the corresponding Euler-Lagrange equation

−λ∇R(u) + χΩ\D(g − u) = 0, in Ω,

. . . the corresponding steepest descent equation for u(., t = 0) = g is
the given image

ut = −λ∇R(u) + χΩ\D(g − u), in Ω.

. . . in other situations we encounter equations that do not come from
variational principles, such as Cahn-Hilliard- and TV-H−1 inpainting.
Then the image processing approach is directly given by an
(evolutionary) PDE.
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Image Inpainting The Variational/PDE Approach

Variational/PDE approach - some remarks

In the setting of such global inpainting approaches . . .

. . . no regularity assumptions on the inpainting domain(s) are
necessary.
. . . no explicit boundary conditions are imposed at the boundary
∂D of the inpainting region.

These properties make such inpainting approaches applicable to all
kinds of damaged images . . .
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Image Inpainting The Variational/PDE Approach

Inpainting review

R(u) =
∫
Ω |∇u|2 dx, Harmonic-inpainting.

R(u) = |Du|(Ω), TV-inpainting (Chan and Shen 2001).
R(u) =

∫
Ω(1 + (∇ · (∇u/|∇u|))2)|∇u| dx, Euler´s elastica

inpainting (Caselles, Masnou, Morel, Sbert 1998, Chan, Kang,
Shen 2002).

Why do we complicate our life? ⇒ Will try to answer
this soon.

. . . more inpainting models . . .

. . . seeking for less complex (curvature term!) models with the
same performance than Euler’s elastica inpainting . . .
Inpainting for binary images with the Cahn-Hilliard equation
(Bertozzi, Esedoglu and Gillette 2006).
TV-H−1 inpainting (M. Burger, L. He, C.-B.S. 2008)

. . . so why do we consider higher-order inpainting models?
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Image Inpainting Second- Versus Higher-Order PDEs for Inpainting

Second order approaches

Example: TV-inpainting

|Du|(Ω) ≈
∫

Ω
|∇u| dx

Propagate sharp edges into the damaged domain +

min
u

∫
Ω
|∇u| dx ⇐⇒ min

Γλ

∫ ∞

−∞
length(Γλ) dλ,

where Γλ = {x ∈ Ω : u(x) = λ}.
Penalizes length of edges =⇒ cannot connect contours across
very large distances -
Can result in corners of the level lines across the inpainting
domain -
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Image Inpainting Second- Versus Higher-Order PDEs for Inpainting

Higher order approaches

Example: Euler’s elastica inpainting

minu

∫
Ω(a + b

(
∇ ·

(
∇u
|∇u|

))2
)|∇u| dx

⇐⇒
minΓλ

∫∞
−∞(a length(Γλ) + b curvature2(Γλ)) dλ.

(a) Connectivity principle (b) Smooth continuation

4

4Pictures taken from Chan, Kang, Shen 2002
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4

4Pictures taken from Chan, Kang, Shen 2002
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Image Inpainting Second- Versus Higher-Order PDEs for Inpainting

Higher order approaches (cont.)

Example: Cahn-Hilliard inpainting
The inpainted version u of f ∈ L2(Ω) assumed with any (trivial)
extension to the inpainting domain is constructed by following the
evolution of

ut = ∆(−ε∆u +
1
ε
F ′(u)) + χΩ\D(f − u) in Ω,

where F (u) is a so called double-well potential, e.g., F (u) = (u2 − 1)2.

[Bertozzi et al. 06] proved that in the limit λ0 →∞ a stationary solution
solves

∆(ε∆u− 1
ε
F ′(u)) = 0 in D

u = f on ∂D

∇u = ∇f on ∂D,

for f regular enough (f ∈ C2).
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Image Inpainting Second- Versus Higher-Order PDEs for Inpainting

Higher order approaches

Challenges
Higher order equations are very new and little is known about
them.
Often they do not possess a maximum principle or comparison
principle.
For the proof of well-posedness of higher order inpainting models
variational methods are often not applicable.
Need of simple but effective models.
Need of stable and fast numerical solvers.
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Image Inpainting Second- Versus Higher-Order PDEs for Inpainting

Next time . . .

Cahn-Hilliard inpainting:

ut = ∆(−ε∆u +
1

ε
F ′(u)) +

1

λ
χΩ\D(f − u) in Ω.

(existence, stationary solutions, characterization of solutions, boundary
conditions.)

TV-H−1 inpainting: (generalization of Cahn-Hilliard inpainting for grayvalue
images!)

ut = ∆p +
1

λ
χΩ\D(f − u), p ∈ ∂TV (u).

(Stationary solution, cooperation of transport and diffusion, error analysis.)
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Image Inpainting Second- Versus Higher-Order PDEs for Inpainting

End of Part I

Thank you for your kind attention!
write to: c.b.schonlieb@damtp.cam.ac.uk
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